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Abstract

In this paper we are interested in the Quartapelle–Napolitano approach to calculation of forces in viscous

incompressible flows in exterior domains. We study the possibility of deriving a simpler formulation of this approach

which might lead to a more convenient expression for the hydrodynamic force, but conclude that such a simplification

is, within the family of approaches considered, impossible. This shows that the original Quartapelle–Napolitano

formula is in fact ‘‘optimal’’ within this class of approaches.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Calculation of hydrodynamic forces acting on an object immersed in a fluid is one of the central objectives in many applied

problems in Fluid Dynamics. In this investigation we analyse the possibility of extending the approach to calculation of forces

proposed by Quartapelle and Napolitano (1983). We will be concerned with incompressible flows in unbounded exterior

domains (Fig. 1(a)). In some derivations we will also consider truncationsO1 of the domainO obtained by imposing an exterior

boundary G1 (Fig. 1(b)). We will fix the origin of the coordinate system at the obstacle and will assume that the obstacle

remains motionless with the fluid velocity vanishing on its boundary. We will also assume that there is a uniform flow U1e1 at

infinity (e1 is the unit vector corresponding to the OX axis). The fluid motion is governed by the Navier–Stokes system

representing conservation of mass and momentum. This system of equations will be assumed to have the following form:

qu
qt
� u� xþ =

u2

2
þ =pþ n=� x ¼ 0 in O� ½0;T �, ð1aÞ

= � u ¼ 0 in O� ½0;T �, ð1bÞ

ujt¼0 ¼ u0 in O, ð1cÞ

ujG0
¼ 0 in ½0;T �, ð1dÞ

u�!U1e1 in ½0;T � for jxj !1, ð1eÞ
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic of the flow past an obstacle G0 in (a) an unbounded exterior domain O and (b) an exterior domain O1 with an outer

boundary G1.
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where u ¼ ½u1; u2; u3� is the velocity field, x ¼ =� u is the vorticity, p is the pressure, n represents the coefficient of the

kinematic viscosity (the density of the fluid is assumed equal to unity), u0 is the initial condition, T represents the end of the time

interval considered and x ¼ ½x1; x2;x3� is the position vector. Given an object with a boundary G0 characterized by the local

unit normal vector n facing into the object (Fig. 1(a,b)), the hydrodynamic force acting on this object is, by definition, given by

the following expression:

F ¼ Fp þ Fn ¼

I
G0

pnds� n
I
G0

=uþ ð=uÞT
� �

nds ¼
I
G0

pndsþ n
I
G0

n� xds. (2)

The velocity gradient is defined as ½=u�ij ¼ qui=qxj and the two forms of the viscous term Fn are equivalent due to the identityH
G0
ð=uÞTnds ¼ 0 valid for all incompressible fields u. The arguments that we will elaborate in this paper will be valid in both

2D and 3D domains; for the sake of simplicity of exposition, however, the main proof will be restricted to the 2D case with its

generalization to 3D being quite straightforward.

It is often convenient to solve equations of fluid motion (1) in one of the so-called ‘‘non-primitive’’ formulations

involving only vorticity and velocity, or streamfunction [see, e.g., Gresho (1991), Quartapelle (1993)]. In such cases one

does not have direct access to the pressure required to evaluate Fp. Similar situation arises also in experimental

investigations where the Particle Image Velocimetry (PIV) measurements are capable of extracting instantaneous

velocity and vorticity fields with systematically increasing resolution in space and time [see, e.g., Rockwell (2000)].

Unavailability of pressure in such approaches motivates the need for alternative ways of calculating the hydrodynamic

force in which pressure is not needed. In the literature several methods have been proposed, all relying on suitable

manipulation of the Navier–Stokes system (1). Below we will briefly review the most important results; derivation of

some of these approaches will be analysed in detail in the following section. We also remark that, in view of the

assumptions made, these expressions will not include terms corresponding to the motion of the obstacle. This lack of

generality, however, does not affect the main point of the paper.

The best-known approach, popularized by Saffman (1992), expresses the force in terms of the vorticity impulse as

F ¼ �
1

D� 1

d

dt

Z
O
x� xdO, (3)

where D ¼ 2; 3, is the spatial dimension. While providing an interesting insight into the relationship between the force

and vorticity dynamics, this approach has the disadvantage that integration is extended over the whole infinite domain.

Consequently, vorticity at very large distances from the obstacle must be included which can be quite difficult in both

numerical simulations and PIV measurements. In addition, the time derivative present in Eq. (3) tends to amplify noise.

As an alternative, Noca et al. (1997, 1999) proposed a family of formulas with the generic form

F ¼ �
1

D� 1

d

dt

Z
O1

x� xdOþ ½integral over G1� þ ½integral over G0�, (4)

where integration is restricted to the truncated domain O1 and the far field contribution is contained in the integral over

G1. These formulas no longer require integration over an infinite domain, but still suffer from the presence of the time

derivative. Furthermore, evaluation of the fluxes involved in the integrals over G1 may be complicated.

A different approach was proposed by Quartapelle and Napolitano (1983) where, before integrating over the domain,

the momentum equation (1a) is multiplied by the gradient =Za of a harmonic function Za which satisfies a Neumann-

type boundary condition n � =Za ¼ �n � a on G0 and whose gradient decays to zero at the outer boundary. As a result,
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the hydrodynamic force in the direction of the vector a 2 RD is given by the expression

Fa ¼ F � a ¼ �

Z
O

=Za � ðu� xÞdOþ n
I
G0

ð=Za þ aÞ � ðn� xÞds. (5)

We remark that in the above expression the two terms involving the function Za represent the contributions from the

pressure force Fp � a. Formula (5) has the advantage that, apart from the absence of the time-derivative, the integrand

expression in the area integral includes a factor that rapidly decays with the distance from the obstacle. As a result,

formula (5) is much more convenient to apply in numerical simulations where resolution of the velocity and vorticity

fields is usually decreased far from the obstacle, and/or PIV measurements where data is usually confined to a finite

domain. This method has been further developed by Chang (1992), Howe (1995), Chang and Lei (1996), Chang et al.

(1998) which included a generalization for the compressible case, Protas et al. (2000) and Pan and Chew (2002). This

approach has also been the method of choice for force calculations in several investigations employing the Vortex

Methods [see, e.g., Smith and Stansby (1988), Chang and Chern (1991), Stansby and Slaouti (1993), Clarke and Tutty

(1994), Protas et al. (2000), Cheng et al. (2001)] and appears as a promising possibility for calculating force based on

data obtained from PIV measurements (Wesfreid, private communication). A similar approach has been used by Wells

(1996, 1998) for theoretical investigations. It has been recognized, however, that the approach leading to formula (5)

has certain shortcomings. We note that the expression for the pressure force Fp involves a boundary integral term

proportional to the viscosity n. In order to evaluate this term and the term representing viscous stresses, the distribution

of vorticity on the boundary must be available which in many applications is rather inconvenient (in grid-based

numerical methods and in PIV this may require construction of complicated differentiation stencils, whereas in vortex

methods complex interpolation schemes may be needed). The purpose of the present paper is to examine the possibility

of simplifying the Quartapelle–Napolitano approach in a way to alleviate these difficulties, i.e., express the force with a

formula akin to Eq. (5), but without boundary terms involving data other than the boundary conditions for problem

(1). We will attempt this by replacing =Za in the derivation of Eq. (5) with a more general function. It will be proven,

however, that such a simplification is not, in fact, possible. Therefore, the Quartapelle–Napolitano formula (5) can be

regarded as ‘‘optimal’’ within this family of variational approaches (the term ‘‘optimal’’ is not used here in its strictly

mathematical sense, but rather implies that formula (5) represents an approach more convenient than other from the

computational point of view).

The structure of the paper is as follows: in Section 2 we revisit the derivation of formula (5) in a more general setting

and suggest formally the new approach, in Section 3 we state and prove a theorem showing that the desired

simplification is not in fact possible; some consequences of the presented arguments and conclusions are discussed in

Section 4.
2. The variational formulation—a general approach

In this section we analyse the derivation of the Quartapelle–Napolitano formula (5) with the purpose of modifying

this derivation in such a way that the boundary terms involving vorticity would no longer be present. We will investigate

this possibility as a generalization of the standard approach introduced by Quartapelle and Napolitano (1983). First we

show that the different approaches to calculation of forces mentioned in Section 1 and the approach we are about to

investigate can in fact be derived using the following general procedure:
(1)
 choose a function c 2 ½H1ðOÞ�D, where ½H1ðOÞ�D denotes the Sobolev space of vector-valued functions with square-

integrable derivatives in O, such that

BcjG0
¼ Ba, (6)

where B : cjG0
! BcjG0

is a linear operator acting on the boundary values (traces) of the function c;

(2)
 multiply the momentum equation (1a) by c and integrate over the truncated domain O1:Z

O1

c �
qu
qt
� u� xþ =

u2

2

� �
dO ¼

Z
O1

c � �=p� n=� x½ �dO; (7)
(3)
 use integration by parts and relation (6) valid on the boundary to extract from Eq. (7) the terms corresponding to

Eq. (2);
(4)
 assume that G1 !1 which, given the assumptions on the behaviour of c and u for large jxj, will remove the

integrals defined on G1.
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More specifically, step 4 of the above procedure requires an assumption that the decay of the field ðu�U1e1Þ for

jxj ! 1 be sufficiently rapid [Oðjxj�2Þ in 2D and Oðjxj�3Þ in 3D]. We remark that steady solutions of the Navier–Stokes
system do not necessarily satisfy these assumptions [see, e.g., Galdi (1994)]. As a result, some of following expressions

may, somewhat paradoxically, be inapplicable in the case of steady flows.

In order to obtain a unique function c, condition (6) has to be supplemented with an additional condition defined in

the domain O. We will illustrate now how the above general procedure can lead, for different choices of this additional

condition, and hence the function c, to formulas (3)–(5). Then, a new approach will be formulated by requiring of the

function c to be characterized by still more general properties. In all cases we will calculate the projection of the force on

an arbitrary vector a (by choosing a ¼ ei, i ¼ 1; . . . ;D, where ei is the unit vector associated with the ith axis of the

coordinate system, we will obtain components of the force in the corresponding directions).

The impulse formula (3) is obtained trivially by choosing

c ¼ a in O; hence, by extension, B ¼ Id) cjG0
¼ a, (8)

i.e., the function c is constant and given by the vector a everywhere. Following our general procedure and using

standard vector identities [see, e.g., Noca et al. (1999)] we obtain

F � a ¼ �
a

D� 1
�
d

dt

Z
O
x� xdO, (9)

which is in fact equivalent to formula (3) dotted with the vector a. By abandoning step 4 of the procedure, i.e., retaining

a truncated domain O1, we would obtain an expression for F � a equivalent to dotting (4) with the vector a.

The Quartapelle–Napolitano formula (5) is obtained by choosing the function c in the form c ¼ �=Za, where Za

satisfies the following Neumann problem for the Laplace equation:

= � c ¼ �DZa ¼ 0 in O;

B ¼ ðn; �Þ ) ðn; cjG0
Þ ¼ �n � =ZajG0

¼ n � a;

c! 0 for jxj ! 1;

8><
>: (10)

where ð�; �Þ represents the standard Euclidean inner product. Following the steps of the general procedure and

employing transformations described in detail by Protas et al. (2000), we can express the pressure force as

Fp � a ¼ �

Z
O

=Za � ðu� xÞdOþ n
I
G0

=Za � ðn� xÞds. (11)

The second term on the right-hand side in Eq. (11) is similar, but not equal, to the term representing the viscous

stresses in Eq. (2). In order to obtain an expression for the total force, the viscous term Fn � a must be added to

Eq. (11) which will result in formula (5). The form of the second term on the right-hand side in Eq. (5), which can be

rewritten as

n
I
G0

ð=Za þ aÞ � ðn� xÞds ¼ �n
I
G0

x � ½n� ð=Za þ aÞ�dO, (12)

may suggest that we could redefine the function c by adjusting the boundary condition (6) in such a way as to get rid of

this term altogether. This is the motivation for a more general approach that we consider formally below.

In this approach we will thus employ a function c which should satisfy the following set of conditions:

=� c ¼ 0 in O;

= � c ¼ 0 in O;

B ¼ Id ) c ¼ a on G0;

c! 0 for jxj ! 1:

8>>>><
>>>>:

(13)

We notice that this problem in fact represents an augmented version of the original problem (10) in which the constraint

of vanishing curl is added and the boundary conditions are specified for all components of c, rather than just the wall-

normal component. The hope is that these additional assumptions would make it possible to derive an expression for

the hydrodynamic force simpler than the original formula (5). The important issue of consistency of system (13) will be

specifically addressed in Section 3. In principle, solution to problem (13) can be constructed using the

Helmholtz–Hodge decomposition (Quartapelle, 1993):

c ¼ �=j� =� w, (14)
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where the two functions j and w, corresponding to the potential and the solenoidal part, can be found by solving the

system of equations

�Dj ¼ 0 in O;

�=� =� w ¼ 0 in O;

= � w ¼ 0 in O;

n � =jþ n � ð=� wÞ ¼ �n � a on G0;

n� =jþ n� =� w ¼ �n� a on G0;

=j; =w! 0 for jxj ! 1;

8>>>>>>>>><
>>>>>>>>>:

(15)

the third equation in (15) is a ‘‘gauge’’ condition added to close the system. We remark that system (15) is equivalent to

Eqs. (13)–(14). As is well known (Quartapelle, 1993; Richardson and Cornish, 1977), in general decomposition (14) is

not unique, but there are several ways to make it unique by prescribing appropriate boundary conditions for the

potentials j and w. However, for our purposes here it is sufficient to leave the boundary conditions in the coupled form

present in Eq. (15). In the remaining part of this section we will formally use solutions of system (15) together with our

general procedure to derive an apparently very appealing expression for the hydrodynamic force.

Since the derivations to follow are new, we will present them in some detail. We begin by integrating by parts the

terms on the right-hand side of Eq. (7):

�

Z
O1

c � =pdO ¼
Z
O1

p= � cdO�
I
G0[G1

pn � cds

¼ �

I
G0

pn � ads�
I
G1

pn � cds,

�n
Z
O1

c � ð=� xÞdO ¼ � n
Z
O1

x � ð=� cÞdO� n
I
G0[G1

c � ðn� xÞds

¼ � n
I
G0

a � ðn� xÞds� n
I
G1

c � ðn� xÞds.

When G1 !1, the assumptions concerning the asymptotic behaviour of c and u for large jxj imply that the integrals

on G1 vanish. Thus, we obtain for the terms on the right-hand side in Eq. (7):Z
O

c � �=p� n=� x½ �dO ¼ �a �
I
G0

pnds� na �
I
G0

n� xds ¼ �F � a. (16)

We now proceed to analyse the terms on the left-hand side in Eq. (7) and begin with the time-derivative term in which

we express the velocity field in terms of the stream vector W as u ¼ =�W:Z
O1

c �
qu
qt

dO ¼
Z
O1

c � =�
qW
qt

� �
dO ¼

Z
O1

qW
qt
� ð=� cÞdsþ

I
G0[G1

c � n�
qW
qt

� �
ds

¼

I
G0

a � ðn�
qW
qt
Þdsþ

I
G1

c � ðn�
qW
qt
Þds.

Letting again G1 !1, by (1e) we have W! W19½0;�1
2
U1x3; 12U1x2� which is time-independent, so that the integral

on G1 vanishes and we obtainZ
O

c �
qu
qt

ds ¼
I
G0

ðn� aÞ �
qW
qt

ds. (17)

The streamvector W is defined via the system of equations

DW ¼ �x in O;

= �W ¼ 0 in O;

n � ð=�WÞ ¼ 0 on G0;

W! W1 for jxj ! 1:

8>>><
>>>:

(18)

In order to evaluate Eq. (17) we need the boundary value WjG0
of the stream vector. It is known [see, e.g., Quartapelle

(1993)] that the boundary value WjG0
can be expressed, up to a time-dependent constant, entirely in terms of the

boundary data for velocity (this construction is illustrated for the simpler 2D case in Appendix A).
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We keep the form of the second term on the left-hand side in Eq. (7) unchanged, whereas as regards the third term we

proceed using integration by parts as follows:

Z
O1

c � =
u2

2

� �
dO ¼ �

Z
O1

ð= � cÞ
u2

2
dOþ

I
G0[G1

n � c
u2

2
ds

¼

I
G0

n � a
u2

2
dsþ

I
G1

n � c
u2

2
ds.

As before, when G1 !1, the integral over G1 vanishes and we obtain

Z
O

c � =
u2

2

� �
ds ¼

I
G0

n � a
u2

2
ds. (19)

Thus, putting together Eqs. (7), (16), (17) and (19), we obtain what appears to be a new expression for the

hydrodynamic force in which the boundary integrals are expressed entirely in terms of the boundary conditions for

the problem (1):

F � a ¼

Z
O

c � ðu� xÞdO�
I
G0

ðn� aÞ �
qW
qt

dsþ
I
G0

n � a
u2

2
ds.

Assuming, as we do in this investigation, that the boundary velocity vanishes and invoking arguments presented in

Appendix A reduces this expression to a particularly simple form

F � a ¼

Z
O

c � ðu� xÞdO, (20)

where the function c should satisfy (13). We emphasize that, in contrast to Eq. (5), expression (20) does not contain any

boundary integrals involving vorticity which, as argued in Section 1, are awkward to evaluate in numerical simulations

and using data from PIV measurements. In Section 3 we will prove that, regrettably, a function c required to derive

Eq. (20) cannot in fact be constructed, because system (13) does not admit any solutions.
3. Proof of non-existence of the function g

In this section we present a simple proof that, if a is constant vector, system (13) does not in fact admit any solutions.

It is a well-known fact of vector analysis (Girault and Raviart, 1979) that, given the divergence and curl of a vector field

in a bounded domain, this vector field can be reconstructed so that it will satisfy only one scalar boundary condition. As

a matter of fact, this vector field may satisfy boundary conditions on other components as well, but only when the

divergence and curl are ‘‘special’’, in the sense that they satisfy additional constraints, e.g., they come from solutions of

the Navier–Stokes equation. Thus, in general, problems (13)–(15) are overdetermined. Below we show that for the

choice of the boundary data in Eq. (13) (a constant vector) required for the derivation of Eq. (20), the solution does not

indeed exist. For the sake of simplicity of the proof, we restrict our attention here to the 2D case.

Theorem 1. Given a constant vector a 2 R2, system (13) has no solutions in 2D.

Proof. Assume for the moment that a function c satisfying Eq. (13) exists. Since the 2D case is considered, we have

c ¼ ½g1; g2; 0� and q=qx3 � 0. The first two equations in Eq. (13) now reduce to

= � c ¼
qg1
qx1
þ

qg2
qx2
¼ 0, ð21aÞ

=� c ¼ e3
qg2
qx1
�

qg1
qx2

� �
¼ 0. ð21bÞ

We define now z9x1 þ ix2 as a point in the complex plane C, where i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. Thus, relations (21)

represent the Cauchy–Riemann conditions for two conjugate functions g1 and g2 which can therefore be regarded as the

real and imaginary part of an analytic function W ðzÞ9g1 þ ig2. In an unbounded exterior domain O this analytic

function can be represented as a Laurent series:

W ðzÞ ¼
X1

k¼�1

ckzk,
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with the expansion coefficients ck 2 C, k ¼ . . . ;�1; 0; 1; . . . . Without loss of generality, we assume that the contour G0

is a unit circle (the exterior of any other sufficiently regular contour can be transformed into the exterior of a unit circle

using a suitable conformal mapping). The boundary conditions for problem (13) are equivalent to

W ðeiyÞ ¼ � � � þ c�2e�2iy þ c�1e�iy þ c0 þ c1eiy þ c2e2iy þ � � � ¼ a, ð22aÞ

W ðzÞ ! 0 for z!1, ð22bÞ

where a ¼ a1 þ ia2. We observe that, because of Eq. (22b), ck ¼ 0 for kX0. Then, however, there is no choice of the

remaining expansion coefficients ck, ko0, that can make the series in (22a) equal to a constant for all values of y. Thus,
an analytic function satisfying conditions (22) does not exist, from which we conclude that system (13) in 2D does not

admit any solutions. &

The proof in the 3D case can be constructed using analogous methods of the potential theory.
4. Conclusions

In this paper we showed how a family of well-known approaches to calculation of forces in viscous incompressible

flows in exterior domains, including the Quartapelle–Napolitano formula, can be derived in a generic way by making

different choices of the vector field c on which the momentum equation is projected. We then considered a potentially

appealing simplification of the Quartapelle–Napolitano approach in which the terms involving the boundary vorticity

are absent. It was obtained formally by requiring that the function c has more general properties than used in the

original approach. It was, however, proved that a function with such properties cannot be constructed, hence indicating

that the original Quartapelle–Napolitano formula is ‘‘optimal’’ within this family of approaches.
Acknowledgements

The author wishes to thank the anonymous referees for their insightful comments. This work was carried out when
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Appendix A. Boundary value of the streamfunction

In 2D flows velocity can be expressed in terms of streamfunction c as u ¼ ½u; v� ¼ e3 � =c, where e3 is the unit vector
associated with the OZ axis. The boundary value of the streamfunction can be determined, for instance, from the

boundary condition ðqc=qsÞjG0
¼ u � n, where s is the arc-length coordinate along the boundary. Hence,

cðt; sÞ ¼
Z s

s0

unðt; s
0Þds0 þ CðtÞ, (23)

where s0 is some arbitrarily chosen arc–length coordinate and un9u � n. As shown in Girault and Raviart (1979), while

the constant CðtÞmay be determined requiring the pressure to be single-valued in the domain O, it will in general remain

a function of time. Hence, in the 2D case, integral (17) can be expressed for a stationary contour G0 asI
G0

ðnxay � nyaxÞ
qc
qt

ds ¼
I
G0

ðnxay � nyaxÞ
q
qt

Z s

s0

unðt; s
0Þds0 þ CðtÞ

� �
ds

¼

I
G0

ðnxay � nyaxÞ
q
qt

Z s

s0

unðt; s
0Þds0

� �
ds

þ _CðtÞ

I
G0

ðnxay � nyaxÞds

¼

I
G0

ðnxay � nyaxÞ
q
qt

Z s

s0

unðt; s
0Þds0

� �
ds, ð24Þ

where we observed that
H
G0
ðnxay � nyaxÞds ¼ ay

H
G0

nx ds� ax

H
G0

ny ds ¼ 0. Hence, expression (24) may be non-

vanishing only if the boundary conditions for problem (1) are time-dependent.
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